报告题目:A Kernel Based High Order Unconditionally Stable Scheme for Parabolic Partial Differential Equations
报告人:蒋琰教授
报告人单位:中国科学技术大学数学科学学院
时间:2019年4月12日14:00-15:00
地点:教2-314室
主办单位:350VIP浦京集团、科研院
报告内容:In this talk, I will present a novel numerical scheme for solving the parabolic partial differential equations. The proposed method relies on a special kernel based formulation of the solutions found in our early work on the method of lines transpose and successive convolution. High order accuracy in time is realized by using the high order explicit strong-stability-preserving (SSP) Runge-Kutta method. Moreover, theoretical investigations of the kernel based formulation combined with an explicit SSP method indicates that the combined scheme is unconditionally stable and up to third order accuracy.
报告人简介:蒋琰,女,博士,中国科学技术大学数学科学学院教授,特任研究员。毕业于中国科学技术大学数学学院,曾先后在布朗大学联合培养,在密歇根州立大学从事博士后研究。主要研究方向为偏微分方程数值解,近年来在WENO、DG方法的分析和应用方面取得了一系列研究成果,在SIAM Journal on Scientific Computing,Journal of Computational Physics,Journal of Scientific Computing等著名杂志发表文章10余篇,同时担任多个国际著名学术期刊审稿人。